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1. INTRODUCTION

This paper supplies proofs of various results announced in our earlier
paper [11]. Some of the introductory statements from [11] are repeated here
to make the presentation self-contained. We present an algorithm for
minimizing a certain type of non-differentiable convex function constrained
to a convex polytope in [Rd. The particular form of this problem was
motivated by some questions in the equilibrium theory of mathematical
economics. The economic motivation and some other mathematical
considerations appear in Rubin and Sreedharan [8]. The problem is a
generalization of the minimum norm problem of approximation theory [10].
As 'explained below it is also a generalization of results due to Rosen [6],
Wolfe [12] and Lemarechal [2].

The problem of minimizing a convex function over a linearly constrained
set has been the subject of much study. We single out the approach taken by
Rosen [6], where the objective function is smooth. Rosen attempts to exploit
the known convergence of the method of steepest descent in the
unconstrained case. As is typical of so-called "feasible direction" methods,
Rosen computes at each iteration a direction of descent which points into the
constrained region from the current point. He searches in that direction until
he reaches either a relative minimum along the ray of search or the boundary
of the constrained region. The process then repeats. When possible Rosen
uses the negative gradient as the direction. When this direction points out of
the set, he projects it onto a face of the set. Rosen's contribution is the
choice of projected direction. His method is susceptible to a phenomenon
known variously as "jamming" or "zigzagging," in which the sequence
generated clusters at, or even converges to, nonoptimal points. The trouble
lies in the possibility that the sequence is alternating among two or more
faces of the constrained region in such a way that the distance along the
direction of search from the current point to the boundary is going to zero.
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Various modifications have been proposed to avoid this. In particular, Polak
[3,4] has adopted a technique which prohibits the sequence generated from
approaching arbitrarily close to a face when conditions for a constrained
minimum are not being met at the limit.

Rosen's method, and much of the other work in the area, requires that the
objective function be differentiable. It turns out that in the economic
problem alluded to earlier the objective function is not differentiable
everywhere. Attention has recently been focused on algorithms for
optimizing nondifferentiable convex functions. The algorithms of Wolfe [12]
and Lemarechal [2] generalize classical methods for unconstrained
optimization by replacing the gradient with a carefully chosen subgradient.
These algorithms do not apply to the constrained case. The algorithm of
Bertsekas and Mitter [1] is theoretically applicable to constraints even more
general than linear ones. In spite of the ease of proof of convergence by these
authors, their algorithm requires the computation of the "e-subdifferential" of
the objective function, a prohibitive task even in the linearly constrained
case. The algorithm proposed here is prompted by those of Sreedharan
[9, 10], Rosen [6] and Polak [3, 4]. Our algorithm, in contrast to the
Bertsekas and Mitter algorithm, requires only the computation of a subset of
the e-subdifferential and is computationally feasible for a large class of
problems. The actual computational details and experience with a Fortran
program for our algorithm on a CDC 6500 computer will be given in the
paper by Rubin [7].

2. PROBLEM

In this paper we denote the standard Euclidean inner product of two
vectors in IR d by simply juxtaposing them. The corresponding Euclidean
length of a vector is denoted by I. I. We now state the problem. Let Xc IR d

be a non-empty convex polytope defined by

X = {x E IR d Iaix ,.;;; hi' i = 1,..., m},

where ai' x E IRd, hi E IR. By definition a convex polytope is the convex hull
of a finite number of points in IR d and as such is bounded. Letfbe a smooth
strictly convex function on X; i.e.,

f«x + y)j2) < (fin) + f(y))/2, x1=y, x,yEX,

and is of class C 1 in a neighborhood of X. Further, let v be a piecewise affine
convex function on X; i.e.,

v(x) = max{vix) 11 ";;;j";;; r},



where
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Such a v is not differentiable everywhere except in trivial cases. The problem
is to minimize f(x) + v(x) subject to the constraint x E X. Symbolically we
have

(p) \aix::;;:; bi' i = 1,..., m
/flx) + v(x) (min).

We shall refer to this as problem (P). This form of the objective function
arises naturally, when v is obtained by solving a linear programming
problem whose right-hand side, the constraint constants, depends linearly on
a parameter x. In fact, this particular form arose from the economic model
referred to earlier.

3. NOTATION

Let x be a point in the constraint set X and e :> O. We first define the sets
of indices

I.(x) = {l ::;;:;i::;;:;mlaix:>bi-e};

J.(x) = {l ::;;:;j::;;:; r Ivlx) :> v(x) - e}.

Note that

and

Jo(x) = {I ::;;:;j::;;:; r Ivlx) = v(x)}.

Using the above index sets we define the convex subsets of IRd

C.(x) = cone{a; liE I.(x)};

and

K.(x) = conv{ gj UE J.(x)}.

(3.1 )

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Here and elsewhere we denote by cone S the convex cone generated by S
with apex at the origin and by conv S the convex hull of the set S.

640/35/2-2
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For any nonempty closed convex set S c IR d there is a unique point a E S
nearest to the origin, which we denote by N[S]. The point a = N[S] is
characterized by the inequality

a(x-a)~O forallxES. (3.7)

4. ALGORITHM

In this section we present a subgradient projection algorithm for solving
problem (P).

Step O. Start with arbitrary Xo E X, 60 >0 and k = O.

Step 1. Compute Yo = N[Ko(xk ) +Vj(xk ) + CO(xk)], If Yo = 0, STOP; x k

is the solution of problem (P). If Yo *" 0, set 6 = 60 ,

Step 2. Compute Y. = N[K.(xk ) +Vj(x k ) + C.(xk)].

Step 3. If Iy.1 2 > 6 set 6 k = 6, Sk = Y. and GO TO Step 5.

Step 4. Replace 6 by 6/2 and GO TO Step 2.

Step 5. Compute ak =max{a E IR IXk - aSk E Xl. (It will be shown that
ak is positive.) Find ak E [0, ad such that there exists

Zk E KO(xk - aksk) + Vj(xk - aksk),

with

If no such a k exists, set a k = O.k'

Step 6. Define X k +1 = x k - aksk • Increment k by 1 and GO TO Step 1.

Steps 1 and 2 can be implemented as special quadratic programs. Step 5
requires a properly constructed line search and some comparisons. In
practice, Step 1 would be replaced by the statement: STOP if 1Yo I is
sufficiently small. We refer to the paper of Rubin [7] for the computational
details and experience. With small problems even hand calculations using the
above algorithm yielded good answers.

5. CONVERGENCE OF THE ALGORITHM

The proof that the algorithm converges is somewhat involved and depends
on a series of lemmas, some of which are of independent interest.
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We need some more terminology and notation. When F: IR d
--t [-00,00] is

a convex function its e-subdifJerential aJ(x), where e ~ 0, is defined by
saying

u E oJ(x) itT F(y) ~ F(x) + u(y - x) - e, Vy E IRd.

aoF(x) is the subdifJerential of F at x which we denote by aF(x). Any
u E of(x) is referred to as a subgradient of Fat x. More explicitly, u satisfies
the subgradient inequality

F(y) ~ F(x) + u(y - x),

Note, however, that of(x) can be empty. See Rockafellar [5] for all these
and related notions. The constrained problem (P) is converted into an
unconstrained one via the indicator function 0 of the constraint set X which
is defined by setting o(x) =° if x E X and o(x) = 00 if x E X. Then
F = f + v +0 is convex on IR d and the problem minimize F(x), x E IR d is
equivalent to the constrained minimization problem (P). We now state a
sequence of lemmas, using the earlier notation.

5.1. LEMMA. For all e ~°and all x E IR d
, K'(x) c a,v(x).

Proof If u E K,(x), then by (3.6) there exist Aj ~ 0, j E J,(x) such that
L Aj = 1 and

u = L Ajgj .
jEJ,(X)

For j E J,(x), we have

Therefore for every j E J,(x),

V(y) = . max vi(y) ~ vex) - e +giy - x).
l=l, ....r

(5.1.1)

Multiplying these inequalities by Aj and summing over the index set J,(x) we
arrive at the inequality

V(y) ~ v(~) - e + u(y - x).

Since (5.1.2) holds for all y E IR d, the lemma is proved.

(5.1.2)

5.2. LEMMA. Given x E IR d
, there exists a neighborhood V of x such that

Jo(Y) c Jo(x) for all y E V.
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Proof The functions wj = v - Vj' j = I,..., r are continuous with
wix) >°iff j e Jo(x). Thus there exists a neighborhood V of x such that wj
is positive throughout V for each j e Jo(x). If j E Jo(x) and y E V, wiy) >0,
and so j e Jo(y), proving the lemma.

5.3. In the next lemma we will use the notion of the support function of
a set in !Rd. If S is a subset of !R d, then its support function ({J is defined by

({J(x) = sup{xy lyE S},

It is well known that two closed convex subsets of !R d are identical iff their
support functions are the same.

5.4. LEMMA. ov(x) = Ko(x) for every x E X.

Proof Let x E X. Since both ov(x) and Ko(x) are closed and convex, it
suffices, in view of remarks in 5.3, to show that these sets have the same
support function. In fact, we show that v' (x; .) is this support function,
where v'(x; y) is the directional derivative of v at x in the direction y E !R d,
i.e.,

v'(x;y) = lim {v(x + ay) - v(x)}/a.
<>10

(5.4.1)

Since v is an everywhere finite valued convex function, it is known that

v'(x;y) = sup{yu Iu E ov(x)} for all y E !R d
, (5.4.2)

i.e., v'(x; .) is the support function of ov(x). Given y E !R d, by Lemma 5.2
there exists an 6 >°such that Jo(x + ay) c Jo(x) for all a E [0,6]. Now

v(x + ay) = vix + ay),

and

v(x) = vix),

Hence we see that for °~ a ~ 6,

Vj E Jo(x + ay)

Vj E Jix).

v(x + ay) - v(x) = max {vix + ay) - vix)}
jeJo(x)

= max agjy.
jeJo(x)

This in view of (5.4.1) shows that

v'(x;y) = max gjy=max{uyluEKo(x)},
jeJo(x)

(5.4.3)
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and so V'(X; .) is also the support function of Ko(x), completing the proof of
the lemma.

We note that (5.4.3) proves the following statement:

5.5. COROLLARY. v'(x; s) = max{su Iu E Ko(x)}.

5.6. LEMMA. For each x E X and 6> 0 there exists a y> 0 such that

whenever Ix - yl < y.

Proof Choose y >0 such that Igjl y < e/2 for j = 1,... , rand
Ivex) - v(Y)1 <e/2 if Ix - yl < y. Now if j E Jo(x) and Ix - YI < y, then

v(y) - viy) = v(y) - vex) +vix ) - viy)

< e/2 +Igix - y)1 < e,

and so j E J.(y), proving the lemma.

5.7. LEMMA. BF(x) = Vf(x) +Ko(x) + Co(x) for all x E X.

Proof The indicator function b of the set X is clearly proper and convex,
while f and v are everywhere finite valued and convex. It is well known that
for x E X, Bt5(x) = Co(x). Moreover, any x E reI int X belongs to rei int
(eff dom!) n rei int (eff dom v) n rei int (eff dom 15), where rei int and
eff dom denote relative interior and effective domain, respectively. Hence by
Rockafellar [5] the lemma follows.

The next lemma shows that the stopping criterion in Step 1 of the
algorithm is well chosen.

5.8. LEMMA. IfYo = 0 in Step 1 ofAlgorithm 4, then x k is the minimizer
ofF.

Proof Yo = 0 implies that 0 E BF(xk), a necessary and sufficient
condition for xk to minimize F. The strict convexity of f ensures that the
minimizer of F is unique.

5.9. LEMMA. Step 4 of Algorithm 4 is not executed infinitely often in any
one iteration.

Proof If Step 4 is executed infinitely often, then e -+ 0 and Y. -+ O. Now
e1 > e2 ~ 0 implies that K.2(Xk ) c K.Jxk ), C. 2(Xk ) c C.I(Xk ) and hence
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so that y. --+ 0 as e --+ 0 implies that Y. = 0 for every e ~ O. Hence Yo = O. In
this event we could not have reached Step 4 in the first place, a con
tradiction.

We now show that Step 5 of the algorithm is well defined and can be
implemented.

5.10. LEMMA. If Sk 1= 0, then -Sk is a feasible direction of strict descent
at the point Xk.

Proof From the definition of Sk in Step 3 of the algorithm,

Let i E Io(xk) c I.k(xk); then ai E C./xk) and so

Sk +ai E Vf(xk) +K.k(Xk) +C./xk),

using the fact that C.k(Xk) is a convex cone. By (3.7) we have
Sk(Sk +ai - Sk) ~ O. Thus aisk~ 0 for every i E Io(xk). Since aixk <bi for
i ~ Io(xk), there exists a >0 such that ai(xk - aSk) ~ bi for all i = 1,..., m.
Hence -Sk is a feasible direction at x k •

To show that -Sk is a direction of strict descent, we show that

(5.10.1)

From the first part of the proof, there exists a> 0 such that X k - ask E X for
o~ a ~ a. For a in this range, F(xk - aSk) =f(Xk - aSk) + v(xk - aSk) and
so by Corollary 5.5

F'(xk; -Sk) =f'(xk; -Sk) + v'(xk; -Sk)

= -Vf(xk) Sk +maxi-skY lyE KO(xk)}

= -min{(Vf(xk) +y) Sk Iy E KO(xk)}· (5.10.2)

When y E KO(xk) C K.k(Xk) we have

Vf(xk) +y E Vf(xk) +K.k(Xk) + C.k(Xk)

and so by (3.7), sk(Vf(xk) +Y - Sk) ~ 0 and consequently (Vf(xk) +Y)Sk ~
ISkl2 > O. Combining this with (5.10.2) we have

(5.10.3)

completing the proof.
From the first half of Lemma 5.10 we have the following corollary.
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5.11. COROLLARY. The number iik defined in Step 5 of Algorithm 4 is
positive.

The next two lemmas explain the choice of ak and zk in Step 5 of the
algorithm.

5.12. LEMMA. Let Sk=FO and define rp on [O,iid by rp(a)=F(xk-ask).
If iik is not a minimizer of rp on [0, iik], then Zk satisfying Step 5 of Algorithm
4 exists.

Proof By Lemma 5.10, rp'(O) =F'(xk; -Sk) < 0, so that there is some
a E (0, iik] such that rp(a) < rp(O). Since we have hypothesized that iik dges
not minimize rp, there exists ak E (0, iik) minimizing rp over [0, iik]. Set
y = xk - aksk. There exists e >0 such that F(y) ~ F(y + ASk) for 1,11 ~ B. It
follows that

and

{F(y + ASk) - F(y) }/A ~ 0

{F(y - Ask) - F(Y)}/A ~ 0,

(5.12.1)

(5.12.2)

0< A~ e. Since F is convex, the directional derivatives F'(y; Sk) and
F'(y; -Sk) both exist, and from (5.12.1) and (5.12.2) we conclude that
F'(y; Sk) ~ 0 and F'(y; -Sk) ~ O. Using Corollary 5.5

F'(y; ±Sk)=f'(y; ±Sk) + v'(y; ±Sk)

= ±Vf(y) Sk + max{±usk I UE Ko(Y)}·

Since Ko(Y) is compact, there exist u, wE Ko(Y) such that

and

So for an appropriately chosen convex combination h of u and w we have
hE Ko(Y) and

Vf(y) Sk + hSk= O.

Taking Zk = Vf(y) + h E Vf(y) + Ko(Y) satisfies the requirement in Step 5
of the algorithm.

The number ak determined in Step 5 of Algorithm 4 has the following
property.
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5.13. LEMMA. Let Sk 01= 0 and rp be as in the previous lemma. Then ak is
the unique minimizer of rp on [0, ak]' Moreover, ak is positive.

Proof Since F'(xk; -Sk) <0 by Lemma 5.10, the conclusion that ak > 0
follows immediately once we show that ak minimizes rp over [0, ak ].

Uniqueness of this minimizer follows from the strict convexity of F.
If zk satisfying Step 5 of the algorithm cannot be found, then by Lemma

5.12, ak minimizes rp over [0, ak]' and in Step 5 we would have set ak = ak
so that the lemma is verified. So consider the case when ak E (0, ak] is
located such that an appropriate vector Zk exists. Set now y = x k - aksk .
Since Zk E Vf(y) +Ko(Y) c of(y), for any a E [0, ak] we have by the
subgradient inequality that

so that ak minimizes rp over [0, ak]' completing the proof of the lemma.

5.14. COROLLARY. Let Sk 01= 0 and Xk+ 1 = Xk - aksk as in Step 6 of
Algorithm 4. Then F(Xk+ 1) <F(xk).

Proof This follows from Lemma 5.13 and the observation that
F'(xk; -Sk) < O.

The lemmas stated up to this point prove that the algorithm is feasible and
that F decreases at each iteration. We now turn to lemmas leading to a
convergence proof.

5.15. LEMMA. Let x E X be the minimizer of F and x be a cluster point
of the sequence (xk). Then (xk) converges to x.

Proof Let x be any cluster point of (xk). We have F(x) = F(x). Since F
is strictly convex, x is the unique minimizer, so that x= x. Hence the
sequence (xk) has a unique cluster point x. Due to the compactness of X, we
now conclude that the sequence (xk ) converges to x.

5.16. LEMMA. Let 0 be a cluster point of the sequence (Sk)' Then the
sequence (xk) converges to x, the minimizer of F.

Proof We pass to corresponding subsequences (Sk') and (xk') such that
Sk' -+ 0 and x k' -+ xE X. We shall show that x minimizes F, so that by the
previous lemma xk -+ X. Since the restriction of F to X is continuous from
within X, to prove that x is a minimizer of F, it suffices to show that
F(y) >F(x) for all y E rei int X. Let y E rei int X. For all i E Io(x),
a; y < bi = a;x, and so for k' sufficiently large

for all i E Io(x). (5.16.1)
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Since Sk' -+ 0 and ek,:::;; ISk,lZ, ek, -+ 0, so that for k' sufficiently large
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(5.16.2)

Now there exist Uk' E K.jxk,) and Wk' E C.k,(Xk,) such that Sk' = "ilf(xk,) +
Uk' + wk" By Lemma 5.1, K.k(Xk) c O'k v(xk), so that

Since f is convex, it follows that

F(y) - F(xk,) ~ "ilf(xk,)(y - x k') + uk'(Y - x k') - ek,

= Sk'(Y - x k') - wdY - xk') - ek"

(5.16.3)

(5.16.4)

Assume that k' is large enough that (5.16.1) and (5.16.2) hold. Since wk '

belongs to the convex cone generated by {a i liE I.jx k ,)}, in view of (5.16.1)
and (5.16.2) we have wk,(y-xk,):::;;O, and so from (5.16.4)

(5.16.5)

when k' is sufficiently large. In the limit (5.16.5) gives

F(y) - F(x) ~ 0,

proving the lemma.

5.17. LEMMA. If 0 is a cluster point of the sequence (e k) defined in
Algorithm 4, then the sequence (xk ) converges to X, the minimizer of F.

Proof. Passing to corresponding subsequences (e k ,) and (xk ,), we may
assume that ek , -+ 0 and xk ' -+ xE X. By Lemma 5.9, Step 4 of the algorithm
is executed finitely often per iteration, and hence the subsequence (e k ,) can
be chosen such that

and

From these we see that IYz.k,l z :::;; 2ek" showing that YZ' k' -+ O. We now repeat
the proof of Lemma 5.16, replacing Sk' with YZ' k" concluding that x k -+ X.

5.18. LEMMA. The sequence (Sk) is bounded.

Proof. Note that
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(5.18.1)

KO(xk ) is one of a finite number of possible polytopes, so that there is an
upper bound on IN[Ko(xk)]1 independent of k. As f is of class CIon the
compact set X, the right-hand side of (5.18.1) is bounded, proving the
lemma.

5.19. LEMMA. If the sequence (Sk) is bounded away from 0, then the
sequence (ak) converges to zero.

Proof Suppose that (Sk) is bounded away from 0 and that ak~ O. Since
ak ISkl is bounded above by the diameter of X and (Sk) is bounded away from
0, (ak ) is bounded. Given this and the compactness of X, we can pass to
corresponding subsequences (Sk')' (ak,) and (xk ') such that Sk' -+ S"* 0,
ak' -+ a> 0 and xk' -+ x E X. By Corollary 5.14, the sequence (F(xk )) is
monotone decreasing, so that all of its subsequences have the same limit,
namely, F(x). In particular, F(xk,+I) -+ F(x); but Xk'+ 1 = xk' - ak,sk'-+
x - as, so that

F(x - as) = F(x). (5.19.1)

Since F is convex and F(xk,-ak,sk,)~F(Xk,-ASk') for all AE [0, Uk']' we
have

and so in the limit

F(x - as) ~ F(x - as/2) ~ F(x). (5.19.2)

Since a >0 and S"* 0, (5.19.1) and (5.19.2) taken together contradict the
strict convexity of F.

5.20. LEMMA. Let the sequence (ek) defined in Algorithm 4 be such that
there exists e ~ 0 satisfying ek ~ efor every k. For any index i, the inequality

(5.20.1 )

implies the inequality

(5.20.2)

Proof. If (5.20.1) holds, then i E I.k(xk ), and so ai E C.k(Xk). As noted in
the course of proving Lemma 5.10, we get aisk ~ O. Since Xk+1 = Xk - aksk,
we now see that (5.20.2) holds.
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5.21. LEMMA. Assume that the following hold.

(i) The sequence (ek) in Algorithm 4 is such that there exists e >0
with ek? e for all k.

(ii) The sequence (ak) converges to O.

(iii) Some subsequence (xk') of (xk) converges to the point x.

Then there exists a subsequence of (xk,), again denoted (xk,), such that
Io(xk,) = Io(x) for every index k'.

Proof Assume that (i), (ii) and (iii) hold. Since the index sets Io(xk') are
subsets of the finite set {l,..., m}, we can pass to a subsequence of (Xk')'
again denoted (xk')' such that for some subset I of {l,..., m} we have
Io(xk,) = I for all k'. We will show that Io(x) = I. If i E I, then aixk,= bi for
all k', so that in the limit aix=bi. Therefore Iclo(x). Now suppose that
i E Io(x)\!. We derive a contradiction. Since X kt 1 = Xk - aksk, with (Sk)
shown bounded in Lemma 5.18 and ak---+O, we see that Ixkt1-xkl---+0 as
k ---+ OCJ. Hence there exists k o such that

ai(xkt 1 - X k) <e/2

Choose P? ko such that Io(xp ) = I and

for all k? ko• (5.21.1)

(5.21.2)

Such an index p exists because i E Io(x) implies that bi - aixk'---+
bi - aix = 0. Also e> 0, since i (/; I. Let q be the first index such that q >p
and

Now by (5.21.1), (5.21.2) and (5.21.3)

bi - aixq-l = bi - aixq+ai(xq- xq_1) <e/2 +e/2 <e,

and so by Lemma 5.20

bi - aixq_1~ bi - aixq~ e/2.

(5.21.3)

(5.21.4)

Note that q - 1 ? p. If q - 1 =p, then (5.21.4) contradicts (5.21.2). If
q - 1 >p, then (5.21.4) contradicts the choice of q as the smallest index
greater than p such that (5.21.3) holds.

5.22. COROLLARY. Suppose that the following hold.

(i) There exists e >0 such that 6k? 6 for all k.

(ii) There exists r, >°such that ISkl? r, for all k.

(iii) Some subsequence (xk') of (xk) converges to x.
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Then there is a subsequence of (xk,), again denoted (xk,), such that
Io(xk,) = 10(x) for all k'.

Proof Hypothesis (ii) of this corollary implies hypothesis (ii) of Lemma
5.21 by Lemma 5.19.

We are at last prepared to prove the convergence of our algorithm.

5.23. THEOREM. Algorithm 4 generates either a terminating sequence
whose last term is the minimizer of problem (P) or an infinite sequence
converging to the minimizer ofproblem (P).

Proof In view of Lemma 5.8, we need only consider the case in which
Algorithm 4 generates an infinite sequence (xk). In this case, Sk *" 0 for every
k. We assume that (xk ) fails to converge to the solution of (P) and derive a
contradiction.

By Lemma 5.16 we may suppose that there exists rf > 0 such that ISkl ~ rf
for all k. Similarly, by Lemma 5.17 we may assume that there exists e >0
such that ek~ e for all k. By Lemma 5.18, (Sk) is bounded. Also X is
compact. Hence we may pass to a subsequence (k') of positive integers such
that

and (5.23.1)

From Step 6 of the algorithm, xk'+I=xk,-ak,sk" Since ISkl~rf for all k,
Lemma 5.19 ensures that ak--+ 0, and so xk'+1 --+x. Passing to a subsequence
of (k'), again denoted (k'), we may suppose that there exist sets I, J and J'
of indices such that

(5.23.2)

for all k'. We assert that J' cJ. Since Xk'+I--+X, JO(Xk'+I)cJO(X) for k'
sufficiently large. Moreover, since x k ' --+ x and e > 0, by Lemma 5.6,
Jo(x) cJE(Xk,) for k' large enough. As ek,~ e, we must have JE(Xk,) c
JEk,(Xk,). Thus for k' sufficiently large

J' =JO(Xk'+I) cJo(x) cJE(Xk,) cJEk,(Xk,) =J,

and so J' cJ.
Using Corollary 5.22, since x k '+ I --+ X we can pass to yet another subse

quence, again denoted (k'), such that

for all k'. Now set

(5.23.3)

K=conv{gjljEJ} and C = cone{a; liE I}. (5.23.4)
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Due to (5.23.2) and (5.23.4), we see that for all k'
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and (5.23.5)

From (5.23.3) we deduce that ak, < ilk' for each k'; for if ak, = ilk" some
constraint inactive at x k' becomes active at x k'+ 1 and so Io(xk,) 1= Io(xk,+ I)'

Thus for each k', the vector Zk' specified in Step 5 of Algorithm 4 must exist,
i.e.,

and

(5.23.6)

Taking into account (5.23.2) and (5.23.4) we have

KO(xk'+I) = conv{ gj Jj E J'} c conv{ gj Jj E J} = K

and so

(5.23.7)

Since Vf(xk'+I)-4 Vf(x) and K is compact, by passing to still another subse
quence (k') and applying (5.23.7) we may assume that there exists
Z E Vf(x) +K such that Zk' -4 z.

From Steps 2 and 3 of the algorithm, we have that

Sk' = N[Vf(xk,) +Kfk,(Xk,) + Cfk,(Xk,)]

and so, in view of (5.23.2) and (5.23.4),

Since xk' -4 x and Sk' -4 S, it follows easily that

S = N[Vf(x) +K + C]. (5.23.8)

Now Z E Vf(x) +K c Vf(x) +K + C, and so by (3.7) we have s(z - s) >0,
Le.,

ZS >IsI 2
,

As ISk,1 >11 for all k', clearly (5.23.9) implies that

zs >11 2 > 0.

On the other hand, letting k' -4 00 in (5.23.6) yields

ZS=o,

(5.23.9)

(5.23.10)

(5.23.11)
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contradicting (5.23.10). Thus our assumption that (xk ) fails to converge to
the solution of (P) cannot be valid. The proof that the algorithm generates a
sequence converging to the optimal solution is now complete.
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